Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network.
نویسندگان
چکیده
The two pyloric dilator (PD) neurons are components [along with the anterior burster (AB) neuron] of the pacemaker group of the pyloric network in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Dopamine (DA) modifies the motor pattern generated by the pyloric network, in part by exciting or inhibiting different neurons. DA inhibits the PD neuron by hyperpolarizing it and reducing its rate of firing action potentials, which leads to a phase delay of PD relative to the electrically coupled AB and a reduction in the pyloric cycle frequency. In synaptically isolated PD neurons, DA slows the rate of recovery to spike after hyperpolarization. The latency from a hyperpolarizing prestep to the first action potential is increased, and the action potential frequency as well as the total number of action potentials are decreased. When a brief (1 s) puff of DA is applied to a synaptically isolated, voltage-clamped PD neuron, a small voltage-dependent outward current is evoked, accompanied by an increase in membrane conductance. These responses are occluded by the combined presence of the potassium channel blockers 4-aminopyridine and tetraethylammonium. In voltage-clamped PD neurons, DA enhances the maximal conductance of a voltage-sensitive transient potassium current (IA) and shifts its Vact to more negative potentials without affecting its Vinact. This enlarges the "window current" between the voltage activation and inactivation curves, increasing the tonically active IA near the resting potential and causing the cell to hyperpolarize. Thus DA's effect is to enhance both the transient and resting K+ currents by modulating the same channels. In addition, DA enhances the amplitude of a calcium-dependent potassium current (IO(Ca)), but has no effect on a sustained potassium current (IK(V)). These results suggest that DA hyperpolarizes and phase delays the activity of the PD neurons at least in part by modulating their intrinsic postinhibitory recovery properties. This modulation appears to be mediated in part by an increase of IA and IO(Ca). IA appears to be a common target of DA action in the pyloric network, but it can be enhanced or decreased in different ways by DA in different neurons.
منابع مشابه
Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.
Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneuro...
متن کاملDopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network.
Bath application of dopamine modifies the rhythmic motor pattern generated by the 14 neuron pyloric network in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. Among other effects, dopamine excites many of the pyloric constrictor (PY) neurons to fire at high frequency and phase-advances the timing of their activity in the motor pattern. These responses arise in part from...
متن کاملRapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output.
Neurons and networks undergo a process of homeostatic plasticity that stabilizes output by integrating activity levels with network and cellular properties to counter longer-term perturbations. Here we describe a rapid compensatory interaction among a pair of potassium currents, I(A) and I(KCa), that stabilizes both intrinsic excitability and network function in the cardiac ganglion of the crab...
متن کاملDopamine modulation of phasing of activity in a rhythmic motor network: contribution of synaptic and intrinsic modulatory actions.
The phasing of neuronal activity in a rhythmic motor network is determined by a neuron's intrinsic firing properties and synaptic inputs; these could vary in their relative importance under different modulatory conditions. In the lobster pyloric network, the firing of eight follower pyloric (PY) neurons is shaped by their intrinsic rebound after pacemaker inhibition and by synaptic input from t...
متن کاملA modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons.
Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of N-methyl-D-aspartate (NMDA) and GABAA receptors is a crucial contributor to the initiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 1 شماره
صفحات -
تاریخ انتشار 1999